Cranley Patterson [CP76]
Descrition
Apply small modular shift vector to all points. It perfors : y_i = (x_i + v) \text{mod} 1.0, for some unfiorm random vector v
- Shifts vector are uniformly selected in [-1, 1]. Hence, shift vector coordinates are uniform, but the direction vector are not uniform in the sphere.
- The methods only operates on points in [0, 1].
Files
src/scramblers/CranleyPatterson.cpp
include/utk/scrambling/ScramblingCranleyPatterson.hpp
Usage
CranleyPatterson scrambler
Usage: ./CranleyPatterson [OPTIONS]
Options:
-h,--help Print this help message and exit
-i,--input TEXT:FILE ... REQUIRED
Input file(s)
-o,--out TEXT [out.dat] Output file (format). {i} splits outputs in multiple files and token is replaced by index.
-s,--seed UINT Seed (unspecified means 'random')
--silent Silence UTK logs
#include <utk/utils/PointsetIO.hpp>
#include <utk/utils/Pointset.hpp>
#include <utk/samplers/SamplerSobol.hpp>
#include <utk/scrambling/ScramblingCranleyPatterson.hpp>
int main()
{
utk::Pointset<double> pts;
utk::SamplerSobol sobol(2 /* dimension */);
sobol.setRandomSeed(/* empty means random, can also pass a number */);
// Check for no errors
if (sobol.generateSamples(pts, 1024 /* Number of points */))
{
utk::ScramblingCranleyPatterson sc;
sc.setRandomSeed();
// In place:
sc.Scramble(pts);
// Results in another pointset
utk::Pointset<double> pts2;
sc.Scramble(pts, pts2);
}
}
import pyutk
samples = pyutk.Sobol(d=2, depth=0).isample(1024) # isample returns integers
sc = pyutk.CranleyPatterson()
).scramble(samples) # returns a double array