Sampler Halton [Hal64]
Description
The Halton sequence. Samples are generated from reversing the n-ary representation of their index. Each dimension has a different basis and the low discrepancy is ensured if all basis are distinct and are prime numbers.
For a more precise description of this sampler and its performances in terms of aliasing and discrepancy, please refer to the following web bundle https://liris.cnrs.fr/ldbn/HTML_bundle/index.html.
Files
src/samplers/Halton.cpp
include/utk/samplers/SamplerHalton.hpp
Usage
Halton sampler
Usage: ./Halton [OPTIONS]
Options:
-h,--help Print this help message and exit
-n UINT REQUIRED Number of points
-d UINT REQUIRED Dimensions
-s,--seed UINT UNUSED ! Here for compatibility with others.
-m UINT [1] Number of pointsets
-o,--out TEXT [out.dat] Output file (format). {i} splits outputs in multiple files and token is replaced by index.
--silent Silence UTK logs
#include <utk/utils/PointsetIO.hpp>
#include <utk/utils/Pointset.hpp>
#include <utk/samplers/SamplerHalton.hpp>
int main()
{
utk::Pointset<double> pts;
utk::SamplerHalton halton(2 /* dimension */);
// Default are the first 100 primes numbers
unsigned int basis[] = {3, 5, 7} // Skip base 2
halton.setBasisList(basis, 3);
// Check for no errors
if (halton.generateSamples(pts, 1024 /* Number of points */))
{
write_text_pointset("halton2d.dat", pts);
}
}
import pyutk
halton = pyutk.Halton(d=2)
# Default is the first 100 primes numbers
halton.setBasisList([3, 5, 7]) # Skip base 2
samples = halton.sample(1024) # This is a numpy array !
Results
License
See licence.md file.